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Abstract: 

We analyzed >700,000 single-nucleus RNA sequencing profiles from 106 donors during 
prenatal and postnatal developmental stages and identified lineage-specific programs that 
underlie the development of specific subtypes of excitatory cortical neurons, interneurons, 
glial cell types, and brain vasculature. By leveraging single-nucleus chromatin accessibility 
data, we delineated enhancer gene regulatory networks and transcription factors that 
control commitment of specific cortical lineages. By intersecting our results with genetic risk 
factors for human brain diseases, we identified the cortical cell types and lineages most 
vulnerable to genetic insults of different brain disorders, especially autism. We find that 
lineage-specific gene expression programs up-regulated in female cells are especially 
enriched for the genetic risk factors of autism. Our study captures the molecular progression 
of cortical lineages across human development. 

Main text 

Development of the human cerebral cortex spans months during prenatal stages and years 
after birth, generating tens to hundreds of cell types across multiple cortical areas. This 
complex process is orchestrated by lineage-specific gene expression programs that guide the 
production, migration, differentiation, and maturation of neuronal and glial cell types, as well 
as the formation of projections and neuronal circuits. Alterations in these regulatory gene 
programs during development lead to the pathogenesis of neurodevelopmental and 
psychiatric disorders, including autism spectrum disorder (ASD) and schizophrenia (SCZ). 
Most previous studies have focused on investigating the molecular processes that underly 
human cortical development during the second trimester of gestation (1–5), which is the 
peak of cortical neurogenesis and neuronal migration. These studies have revealed 
molecular signatures of progenitor cells and neuronal and glial cell types, as well as the early 
specification of neurons into broad subtypes and their arealization across the cortex. 
However, later stages of human cortical development—including the third trimester of 
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gestation, birth, and neonatal and early postnatal development—have been largely studied 
using bulk genomic approaches. 

Single-nucleus RNA sequencing analysis of prenatal and postnatal human cortical 
development 

To gain a comprehensive view of human cortical development across prenatal and postnatal 
stages, we used single-nucleus RNA sequencing (snRNA-seq) (6) to profile 413,682 nuclei 
from 108 tissue samples derived from 60 neurotypical individuals. We sampled nuclei from 
ages spanning from the second trimester of gestation to adulthood, including samples from 
the third trimester and early postnatal stages that are often excluded or underrepresented 
in genomic studies of the human brain. We acquired data from the ganglionic eminences—
the major source of cortical interneurons (7, 8)—and from the cortex. We used Seurat (9) to 
perform unbiased clustering and uniform manifold approximation and projection (UMAP) 
embedding. After removing a cluster of cell debris (fig. S1A), we retained 358,663 nuclei. To 
extend our analyses to more brain samples and nuclei, we integrated our data with published 
datasets of prenatal and postnatal human cortical development (10–12). After data 
integration (fig. S1B), our final dataset included 709,372 nuclei and 169 brain tissue samples 
from 106 individuals (Fig. 1A and data S1). We identified clusters corresponding to neural 
progenitors and to the major subtypes of excitatory and inhibitory neurons, glia, and 
vascular cells (Fig. 1, B and C), indicating that we were able to capture transcriptomic 
changes underlying differentiation and maturation of cortical cell types across development. 
We detected similar numbers of genes, transcripts, and mitochondrial RNA ratios across 
different samples (fig. S1C), with a median of 1106 genes and 1609 transcripts per nucleus 
and some variability from sample to sample. These relative numbers are comparable with 
published single-cell genomics data collected from the human brain (13), with mature 
neuron cell types expressing higher numbers of genes and transcripts than other cell types 
(fig. S1D). We observed neither batch effects (nuclei from different samples were well 
intermixed) nor clusters composed of nuclei from a single sample (fig. S1E). Nuclei were 
captured from the prefrontal, cingulate, temporal, insular, and motor cortices (fig. S1F). For 
prenatal samples that were not sex-identified, we determined their sex using sex-specific 
gene expression (fig. S1G). Our dataset included 45 female and 61 male subjects. We 
observed that nuclei clustered according to developmental age (Fig. 1D), suggesting that 
transcriptomic changes associated with development are a major driver of cell identity. 



 

Fig. 1. Brain tissue samples used for data collection and initial clustering of snRNA-seq data. 

(A) Overview of the tissue samples used in this study, including the number of individuals and the 
ages and brain regions captured in the snRNA-seq dataset. MGE, medial ganglionic eminence; LGE, 
lateral ganglionic eminence; CGE, caudal ganglionic eminence; GE, ganglionic eminence. (B) 
Clustering of the entire dataset, with the major lineages labeled. (C) Expression of cell type–specific 
markers used to determine cardinal lineages. exc neurons, excitatory neurons. (D) Nuclei labeled by 
their developmental age. 

Analysis of specific excitatory neuron and interneuron lineages 

We next examined the developmental trajectories of excitatory and inhibitory neurons. First, 
we selected clusters corresponding to dorsal forebrain progenitors (including radial glia and 
intermediate precursor cells) as well as clusters containing excitatory neurons. By re-
clustering this data and referencing molecularly defined cell types annotated in the Allen 
Brain Atlas (14), we identified clusters corresponding to known subtypes of excitatory 
neurons, including upper (L2-3) and deep-layer intratelencephalic (L5-6-IT) projection 
neurons, layer 4 neurons (L4), and layer 5 (L5) and layer 6 (L6) extratelencephalic projection 
neurons, as well as subplate neurons (SP) that were present transiently during the second 
trimester (Fig. 2A and fig. S2A). We next used the analysis toolkit Monocle 3 (15) along with 
custom scripts (see methods in the supplementary materials) to construct cellular 
trajectories on the basis of snRNA-seq data (Fig. 2A and fig. S2B), select trajectory branches 
corresponding to specific lineages, and calculate pseudotime for each nucleus. Pseudotime 
corresponded well to the developmental age of nuclei in each lineage (Fig. 2A). We identified 
several branching points in the trajectory: between two major groups of excitatory neurons 



L2-3, L4, and L5-6-IT (Ex1) and L5 and L6 (Ex2) and between L4 and L2-3 or L5-6-IT (Ex3). 
Next, we aimed to investigate developmental gene expression changes during differentiation 
and maturation of γ-aminobutyric acid–mediated interneuron (IN) lineages. We selected 
nuclei from both ventral forebrain progenitors and cortical interneurons, re-clustered the 
data, and identified known classes of cortical interneurons (Fig. 2B and fig. S2C), including 
interneurons expressing vasoactive intestinal polypeptide (VIP), calretinin (CALB2), reelin 
(RELN), and nitric acid synthase (NOS); chandelier (PV-CH) and basket (PV-BSK) 
interneurons expressing parvalbumin (PV), membrane metalloendopeptidase (MME), and 
tachykinin precursor 1 (TAC1); and interneurons expressing somatostatin (SST) and co-
expressing SST and reelin (SST-RELN). We then reconstructed lineage trajectories 
corresponding to each interneuron subtype (Fig. 2B and fig. S2D), as well as point of 
trajectory divergence, such as trajectory branches including medial ganglionic eminence 
(MGE)–derived (IN1) and caudal ganglionic eminence (CGE)–derived (IN2) interneurons. 
We calculated pseudotime for each nucleus, which correlated well with the developmental 
age of the interneurons. Next, we asked whether different neuronal lineages in the human 
cortex mature at different rates. We correlated pseudotime with the developmental age in 
each neuronal lineage and observed that neuronal types fell into two main groups: those that 
mostly matured by the end of the second trimester, and those whose transcriptome profiles 
continued to change through the third trimester and after birth (Fig. 2C). The first group 
included L5, L5-6-IT, and all interneuron subtypes, whereas the second group contained L2-
3, L4, and L6 excitatory neurons. This result suggests that certain types of human cortical 
neurons have a protracted maturation timeline. 

 

Fig. 2. Analysis of excitatory and inhibitory neuron lineages.  

(A) Cell types, reconstructed single-cell trajectories, and age distribution for subtypes of excitatory 
neurons. L2-3, upper-layer intratelencephalic projection neurons; L4, layer 4 neurons; L5-6-IT, deep-
layer intratelencephalic projection neurons; L6, layer 6 neurons; L5, layer 5 neurons; SP, subplate 
neurons. (B) Identification of interneuron trajectories. (C) Rates of maturation of subtypes of 
excitatory neurons and interneurons. (D) GO analysis of genes with different age of onset of 



expression. FDR, false discovery rate; Reg., regulation. (E) Examples of top lineage- and branch-
specific genes with transient and burst expression patterns. (F) Number of transient and burst genes 
in specific lineages and branches. (G) Spatial transcriptomic analysis of 140 lineage-specific genes, 
showing the spatial map of annotated cell types across development. GW22, 22 weeks of gestation; 
2wk, 2 weeks postnatal; 25yo, 25-year-old; PFC, prefrontal cortex; Ex, excitatory; radial glial. (H) 
Examples of deep-layer neuronal markers with early patterned layer-specific expression (putative 
layer location is noted in parentheses). 

Once we isolated trajectory branches corresponding to each neuronal lineage, we sought to 
identify lineage-specific gene expression programs. We used an approach that allows 
identification of lineage-specific programs by comparing dynamic expression profiles of each 
gene in a lineage of interest to all other neuronal, glial, and non-neural lineages (see 
methods). In addition, we applied this approach to identify genes specific to related lineages 
in the excitatory neuron and interneuron trajectory branches. In total, we identified 1062 
lineage-specific genes and 405 branch-specific genes (data S2). We classified these genes 
according to the age of onset of gene expression (50% of the maximum expression) and 
performed Gene Ontology (GO) analysis for the genes up-regulated at each developmental 
time point (Fig. 2D). During the second trimester of gestation, we saw enrichment in 
pathways related to neurogenesis, differentiation, and process growth. Up-regulation of 
synaptogenesis and ion transport pathways could be observed during the third trimester but 
was most profound between birth and 1 year of age. Enrichment in synaptic pathways could 
be observed until adulthood. 

In addition to classifying genes according to their age of appearance, we also characterized 
dynamic expression patterns of lineage-specific genes. The two most common patterns we 
observed were transient expression and burst expression where up-regulation would start 
at a certain age and continue into adulthood (Fig. 2E). Our analysis identified several putative 
regulators of neuronal lineage commitment, such as transcriptional regulator MN1 specific 
to L2-3, L5-6-IT, and L4 neurons; noncoding RNAs CYP1B1-AS1 and LINC00507 enriched in 
L2-3 neurons; and HS3ST4 specific to L5 neurons. We saw that genes enriched in more broad 
lineage branches tended to be transiently expressed, whereas genes specific to mature 
neuronal cell types mostly followed burst expression patterns (Fig. 2F). This suggests 
gradual commitment and specification of neuronal cell types through a series of transient 
and burst transcriptional events. We also classified additional less common expression 
patterns, such as biphasic expression (fig. S2E), and identified different biological processes 
enriched for genes with burst and transient expression patterns (fig. S2F). Finally, we 
identified genes dynamically expressed during the specification of subplate neurons by 
comparing lineages during the second and third trimester of gestation when these cells are 
present (fig. S2G). Using spatial transcriptomic analysis of 140 genes across three 
developmental time points, we were able to identify and visualize the spatial location of cell-
specific clusters overlaid on the tissue cytoarchitecture. Focusing on early emerging lineage-
specific genes, we validated the spatiotemporal expression of excitatory layer-specific 
markers (Fig. 2, G and H, and fig. S3). We observed that broad classes of excitatory neurons 
in the Ex1, Ex2, and Ex3 trajectory branches are restricted to specific cortical layers during 
the second trimester of gestation. Moreover, several markers of L4 neurons, such as 
hippocalcin (HPCA) and gremlin 2 (GREM2), are expressed in a layer-restricted manner 
during the second trimester of gestation, suggesting that L4 neuronal identity starts to be 



specified early in development. The layer identity of most excitatory neurons emerges by 
birth (fig. S3) based on the lineage-specific signatures that we find specify human cortical 
neurons and their segregation to cortical layers. 

Dissection of glial and non-neural lineages 

We further focused on the analysis of glial lineages, including astrocytes and 
oligodendrocytes. We re-clustered glial progenitors, oligodendrocyte precursor cells (OPCs), 
oligodendrocytes, and astrocytes and performed trajectory analysis (Fig. 3A). We identified 
two types of astrocytes: fibrous astrocytes with high expression of glial fibrillary acidic 
protein (GFAP) and protoplasmic astrocytes with low expression of GFAP and high 
expression of glutamate transporter GLAST (SLA1A3) (fig. S4A). Next, we performed 
identification of lineage-specific genes in the manner described for neuronal lineages (data 
S2). We first focused on genes that were expressed at the divergence of astrocyte and oligo 
trajectory branches (Fig. 3B). We observed well-known transcription factors guiding 
commitment to the oligo and astrocyte lineages, including OLIG1, OLIG2, ID4, and SOX9, as 
well as other putative regulators, such as the zinc finger protein ZCCHC24 specific to the oligo 
lineage and a DNA binding protein, STOX1, enriched in astrocytes. When comparing fibrous 
and protoplasmic astrocytes, we identified gene programs specific to these cell types (Fig. 
3C). Genes up-regulated in protoplasmic astrocytes after birth and during the first year of 
life were mostly associated with the transport of glutamate and its metabolites (Fig. 3D), 
suggesting a maturation program to support neuronal firing during the early postnatal 
period. For oligodendrocytes, we observed that genes up-regulated during the second and 
third trimesters were associated with glial cell differentiation, whereas myelination genes 
were up-regulated after birth and continued to be expressed into adulthood (Fig. 3E). 
Analysis of microglia development (Fig. 3F) identified three cell trajectories (MG-1, -2, and -
3), one of which (MG-3) was associated with highly activated microglia and was present in a 
small number of samples. These trajectories were confirmed by an alternative analysis using 
Slingshot (fig. S4B) (16). We focused on the nonactivated microglia trajectories (MG-1 and 
MG-2), which were differentiated from each other by expression of a proinflammatory 
microglia marker, IKZF1, expressed in MG-2. IKZF1 was the only gene differentiating MG-1 
and MG-2, suggesting that these trajectories may represent two different states of the same 
microglia cell type rather than different subtypes; therefore, we focused on genes 
developmentally expressed in both of these microglia cell clusters. By performing GO 
analysis of microglia-specific genes up-regulated at different developmental stages, we 
observed complement genes associated with synaptic pruning up-regulated in microglia 
after birth and during the first year of life (Fig. 3G and fig. S4C). These findings suggest that 
the developmental period between birth and the first year of life is a critical period of 
synaptic formation and plasticity that involves not only neuronal lineages but also 
protoplasmic astrocytes and microglia. Finally, we identified gene programs associated with 
the maturation of brain endothelial cells and pericytes (fig. S4, D to F). Our data suggest a 
coordinated maturation of neuronal and glial cell functions that ensures proper formation 
and maintenance of neuronal circuits. 

 

 



 

Fig. 3. Analysis of cortical glial lineages. 

(A) Clusters and trajectories of glial progenitors, astrocytes, and oligodendrocytes. (B) Example 
genes specific to oligodendrocyte and astrocyte lineage branches. (C) Examples of top dynamically 
expressed genes specific to fibrous and protoplasmic astrocytes. (D) GO analysis of protoplasmic 
astrocyte-specific genes expressed during the first year of life. (E) Pathways enriched for oligo 
lineage-specific genes expressed at different developmental stages. (F) Analysis of microglia lineages. 
(G) Temporal patterns of developmental microglia genes. 

Integration with single-cell open chromatin data and identification of lineage-specific 
gene regulatory networks 

Epigenetic regulation plays a crucial role in cortical neuron lineage commitment and 
specification. To identify lineage-specific transcriptional and epigenetic regulators of the 
cortical lineages identified in the snRNA-seq data, we leveraged the recently published 
single-nucleus assay for transposase-accessible chromatin using sequencing (snATAC-seq) 
data from the developing human cortex during prenatal and postnatal stages (4, 10, 11, 17). 
First, we combined snATAC-seq data from four datasets, obtaining 284,907 snATAC-seq 
profiles from 57 tissue samples and 42 individuals across the second trimester and early 
postnatal stages of development, as well as adulthood. We then used Seurat to integrate the 
resulting snATAC-seq data with our snRNA-seq data and mapped the integrated snATAC-seq 
data to the snRNA-seq clusters, UMAP space, and cell types (Fig. 4A; see methods). We 
observed that the developmental ages for the snATAC-seq and snRNA-seq profiles were well 
aligned (Figs. 4A and 1D). Gene activity (open chromatin in the promoter and gene body) of 
cell type marker genes suggested that snATAC-seq profiles mapped to corresponding 
transcriptionally defined neuronal and glial cell types (fig. S5A). Next, we repeated the 
integration and mapping procedure for three major lineage classes: excitatory neurons, 
interneurons, and glia (astrocytes and oligodendrocytes) (Fig. 4, B to D, and fig. S5, B to D). 
We omitted microglia and vascular cells because of a low number of snATAC-seq profiles in 
these lineages. After mapping snATAC-seq data to the transcriptionally defined lineages, we 
selected snATAC-seq cells along each lineage branch (fig. S5, B to D). Not all lineages could 
be reliably recovered owing to the smaller size of the snATAC-seq dataset and the lack of key 
developmental stages, such as the third trimester. We therefore focused on lineages that had 
ATAC cells along the entire span of the trajectory, including four excitatory neuron lineages, 



five interneuron lineages, and both types of astrocytes and oligodendrocytes, as indicated in 
Fig. 4, B to D. Plots of lineage-specific gene activity over pseudotime demonstrated that we 
accurately mapped and selected lineage-specific snATAC-seq profiles (Fig. 4, B to D). Finally, 
we leveraged SCENIC+ (18), a recently developed algorithm that uses paired single-cell 
transcriptomic and open chromatin data to identify enhancer gene regulatory networks 
(eGRNs) and candidate transcription factors that regulate expression of target genes in these 
networks. We applied SCENIC+ to the snRNA-seq and snATAC-seq profiles in each lineage to 
identify open chromatin regions correlated with pseudotime, putative enhancers, candidate 
transcription factors (TFs) that bind them, and their association with lineage-specific 
dynamically expressed genes (data S3). In total, we identified 51 transcription factors 
regulating 1373 lineage-specific genes through predicted binding of 4846 regulatory 
chromatin regions. We observed networks regulated by previously known lineage-specific 
transcriptional regulators, such as SOX5 in deep-layer projection neurons (Fig. 4B), LHX6 in 
MGE-derived PV and SST interneurons (Fig. 4C and data S3), OLIG2 in oligodendrocytes, and 
SOX9 in astrocytes (Fig. 4D). Additionally, we identified previously unrecognized (to the best 
of our knowledge) putative lineage-specific transcriptional regulators, such as BACH2, 
predicted to regulate several key deep-layer transcription factors in L5 neurons, including 
FOXP2 and FEZF2, as well as NFIX and ZNF184 specific to L2-3 neurons and regulating 
expression of the upper-layer master transcription factor CUX2 (Fig. 4B). Our results also 
suggest the role of the transcription factor MAFB in parvalbumin interneuron specification 
(Fig. 4C), as well as of FOXN2 and RFX4 in determining the fate of oligodendrocytes and 
protoplasmic astrocytes, respectively (Fig. 4D). Our data shed new light on epigenetic control 
of neural lineage commitment and identify putative transcription factors and regulatory 
networks that define the fate of specific human cortical neuronal and glial cell types. 

 

Fig. 4. Identification of lineage-specific epigenetic and transcriptional regulators. 

(A) Integration of snRNA-seq and snATAC-seq data. snATAC-seq data was mapped on the snRNA-seq 
coordinates, clusters, and cell types. (B to D) Analysis of eGRNs in excitatory neuron lineages (B), 
interneurons (C), and glial lineages (D). Network plots (eGRNs) display transcription factors 
predicted to bind enhancer regions to regulate lineage-specific transcriptional programs. Edge colors 



indicate regulation by different transcription factors. Top 20 genes on the basis of the predicted 
confidence of interaction are shown for each transcription factor network. 

Identification of region- and sex-enriched lineage-specific gene programs 

Given that we sampled our transcriptomic data from different cortical regions, we asked 
whether lineage-specific developmental gene expression profiles might be spatially defined 
and vary depending on cortical area. We focused on the frontal and prefrontal cortex (PFC) 
because we had the most complete sampling of these cortical areas across developmental 
stages (fig. S6A). We compared each neuronal and glial lineage trajectory in the PFC with the 
trajectories in all other cortical areas and identified PFC-enriched developmentally regulated 
genes in each lineage (data S4). We observed more PFC-specific genes in excitatory neuron 
lineages, especially in intratelencephalic upper (L2-3) and deep-layer (L5-6-IT) neurons, as 
well as in astrocytes and oligodendrocytes, whereas most interneuron lineages and 
microglia expressed fewer PFC-specific genes (fig. S6B). After performing GO analysis for 
PFC genes specific to neuronal lineages, we observed enrichment in cell adhesion and 
synaptic transmission pathways (fig. S6C). Analysis of glia-specific PFC genes demonstrated 
enrichment in different categories of biological pathways associated with cell division and 
cell migration (fig. S6D). Examples of neuronal PFC genes included synaptojanin 2 binding 
protein (SYNJ2BP) regulating receptor localization and signal transduction at the synapse 
and the cation channel TRPC7 (fig. S6E). PFC fibrous astrocytes up-regulated R-spondin 2 
(RSPO2) and frizzled class receptor 8 (FZD8), which both participate in Wnt signaling and 
cell migration. Our results suggest cortical areal differences in lineage-specific 
transcriptomic programs, with synaptic genes up-regulated in neuronal cell types and cell 
division and cell migration programs activated in glial cells in the developing PFC. PFC-
specific expression of synaptic genes in neuronal cell types suggests regional specification of 
neuronal circuits during development. 

We next asked whether the development of specific cellular lineages is modulated in a sex-
dependent manner. For each lineage analyzed, we selected female and male nuclei (Fig. 5A 
and fig. S7, A and B) and identified dynamically expressed genes enriched during either 
female or male development. In total, we identified 740 female-enriched genes and 312 
male-enriched genes (data S5). A smaller fraction of male genes showed sex enrichment in a 
lineage-specific manner (181/312, 58%) compared with female-enriched genes (510/740, 
69%). Despite several top sex-enriched genes located on X and Y chromosomes [including X 
inactive specific transcript (XIST) and protocadherin 11 Y-linked (PCDH11Y)], sex-enriched 
genes were evenly distributed across all chromosomes (fig. S7C), suggesting that sex-
dependent developmental modulation of gene expression is not directly dependent on 
transcription from the sex chromosomes. We next performed GO analysis of female- and 
male-enriched genes, focusing on the neuronal, astrocyte, and oligodendrocyte lineages for 
which we had a large number of samples and nuclei from both sexes. We observed 
substantial differences between the biological processes associated with female-enriched 
genes and male-enriched genes: female genes were involved in developmental processes, 
including cell adhesion, central nervous system (CNS) development, synaptic transmission, 
and membrane potential regulation (Fig. 5B), whereas male genes were associated with RNA 
metabolism and translation (Fig. 5C). Only a small number of male-specific genes, such as Y-
box binding protein 1 (YBX1) and leucine rich repeat and Ig domain containing 1 (LINGO1), 



were associated with developmental processes; however, these genes were enriched across 
multiple male lineages (fig. S7D). We classified sex-enriched genes according to their 
dynamic expression pattern and saw that the majority were expressed transiently (Fig. 5D), 
with >90% reaching medium expression during the second trimester (data S5). This 
suggests early and transient sex-dependent developmental modulation of cortical lineages. 
Sex-enriched genes were more abundant in excitatory neuron lineages than in interneurons 
(Fig. 5E) and were also abundant in female fibrous astrocytes. Several top lineage-specific 
female-enriched genes were associated with neuronal, glial, and endothelial development 
(Fig. 5F and fig. S7E). These included nuclear hormone receptor/transcription factor RORA 
in L2-3 neurons, synaptic protein neurexophilin 3 (NXPH3) in L6 neurons, transcription 
factor HES4 in fibrous astrocytes, and an actin filament depolymerization enzyme, MICAL3, 
in oligodendrocytes. Overall, our results point to modulation of neuronal and glial 
developmental programs during second trimester female brain development. 

 

Fig. 5. Analysis of sex-specific developmental programs in human cortex. 

(A) Female and male developmental trajectories of excitatory neurons, interneurons, astrocytes, and 
oligodendrocytes. (B and C) GO analysis of female-enriched and male-enriched genes. (D) Dynamic 
expression patterns of sex-enriched genes. (E) Sex enrichment of developmental gene expression 
across neuronal and glial lineages. (F) Examples of top female-enriched genes in specific lineages. 

Enrichment of lineage-specific developmental gene programs for risk factors of brain 
disorders 

Once we defined lineage- and sex-specific developmental gene programs in human cortical 
cell types, we sought to investigate how these transcriptional programs may be affected in 
neurodevelopmental, psychiatric, and neurodegenerative disorders. We compiled all 
lineage-specific gene signatures for excitatory neurons, astrocytes, oligodendrocytes, 
interneurons, microglia, endothelial cells, and pericytes, in total obtaining 2796 distinct 
genes, and divided them into five groups according to their age of expression onset (50% of 
max expression). We then overlapped this gene list with lists of rare gene variants associated 
with the risk of ASD from the Simons Foundation Autism Research Initiative (SFARI) Gene 
database (19), as well as genome-wide association study genes for the risk of SCZ (20), 
bipolar disorder (BPD) (21), and Alzheimer’s disease (AD) (22) (Fig. 6A and data S6). We 
observed a large enrichment for genes associated with risk for ASD, SCZ, and BPD in the 
second trimester, with expression of ASD and BPD risk genes extending to the third 



trimester. The risk of neurodevelopmental disorders dropped during later stages of 
development. Expression of AD risk genes remained mostly flat and only slightly above the 
significance level, demonstrating a pattern different from neurodevelopmental and 
psychiatric disorders. We next analyzed enrichment of disease risk genes across cortical 
lineages (Fig. 6B). We were able to detect significant enrichment for ASD risk genes in L5-6-
IT and L5 neurons, whereas AD risk genes were enriched in microglia. We focused on ASD 
because we observed the strongest enrichment for the risk of this disorder among 
developmentally regulated genes and because a large amount of genetic risk data are 
available for this disorder. We observed developmental enrichment of ASD risk genes with a 
SFARI score of 2 or 3 but not a score of 1 and did not find enrichment in syndromic ASD genes 
(Fig. 6C). We observed a significant enrichment among high-confidence ASD risk genes (ASD-
HC) based on the TADA (transmitted and de novo association) analysis (23). We conclude 
that the genetic burden of ASD has the potential to affect the development of specific 
neuronal cell types, especially deep-layer intratelencephalic projection neurons and L5 
neurons. We next explored enrichment of ASD risk genes in sex-specific developmental 
programs. We observed strong enrichment of female-specific developmental genes in both 
SFARI and ASD-HC gene lists (Fig. 6D). Male-specific genes were less frequently found among 
SFARI genes, and we did not find a meaningful overlap between male-enriched and ASD-HC 
genes. This finding points to a strong enrichment of the genetic risk of ASD among 
developmental genes that are more highly expressed in female cells. SFARI genes were 
enriched in female cells across multiple neuronal cell types, especially the subplate and L6 
excitatory neurons, as well as oligodendrocytes and fibrous astrocytes, but not in microglia 
or vascular cell types (Fig. 6E). This suggests a role for the subplate in the pathogenesis of 
ASD. Examples of female-specific ASD-HC genes included the subplate-specific transcription 
factor NR4A2 and the neuronal transcription factor MEF2C that were up-regulated in female 
subplate cells, as well as a regulator of axon guidance and synaptogenesis, neurexin 2 
(NRXN2), and PCDH15 encoding a cell adhesion molecule in female L6 neurons (Fig. 6F). Our 
findings provide strong evidence supporting the ASD female protective effect hypothesis 
(24) and suggest that fine-tuning of cortical cell lineages by sex-specific developmental 
programs can contribute to the male bias in the pathogenesis of ASD. 

Discussion 

By generating snRNA-seq data from the developing human cortex and integrating the 
findings with previously published datasets, we performed a large-scale unbiased 
transcriptomic analysis of human cortical development throughout the life span. By 
reconstructing single-cell trajectories and identifying genes that are expressed in a lineage-
specific manner, we created a compendium of developmental programs for all the major 
cortical cell types. By integrating our data with published single-cell chromatin accessibility 
datasets, we identified enhancer gene regulatory networks and transcription factors that are 
predicted to control the commitment and differentiation of specific cortical neural lineages. 
In addition, we characterized sex- and brain region–specific gene programs that are used by 
particular lineages of cortical cell types. We find that female-enriched genes are associated 
with neurodevelopmental processes, whereas male-enriched genes are involved in protein 
translation control, suggesting sex-specific variation of developmental trajectories. We also 
find that developmental gene programs used by cortical excitatory neurons, astrocytes, and 
oligodendrocytes are the most region-specific. Interneurons, in contrast, express few region-



specific genes during development, consistent with data on regional signatures of cortical 
cell types in the mature human brain (25). 

We investigated the enrichment of genetic risk factors for brain disorders, focusing on ASD, 
and found that the developmental programs of both deep-layer intratelencephalic and 
extratelencephalic projection neurons are enriched for ASD risk genes. These data are in 
agreement with previous reports of enrichment of ASD genes in deep-layer cortical neurons 
during mid-gestation (26, 27) but also suggest that both deep-layer neurons projecting to 
other cortical areas and to subcortical locations could be affected. We previously reported 
that upper-layer cortical excitatory neurons are most dysregulated in the cortex of idiopathic 
ASD patients (28). It would be an important future direction to elucidate how changes in pan-
excitatory neuron programs during development can culminate in dysfunction of specific 
cortical neuronal populations, such as L2-3 neurons. It would also be valuable to explore 
whether the molecular pathology of upper-layer neurons is specific to idiopathic ASD, and 
whether it is driven by common gene variants rather than by rare variants with strong effect 
sizes (29). In addition, we observed a strong enrichment of ASD genetic risk factors among 
female-specific developmental genes. As these female-enriched ASD risk genes have higher 
expression in females during cortical development, it is possible that this higher baseline 
expression renders the female brain more resistant to genetic insults causing autism, 
especially to haploinsufficiency that can reduce transcript or protein expression by affecting 
one of the two alleles. This finding might explain the 4:1 male-to-female ratio of individuals 
affected by ASD and suggests the importance of sexual dimorphism in human brain 
development. However, the role of sex hormones in the increased male-to-female ratio in 
ASD is not to be discounted, and additional studies are needed to reconcile the role of early 
development and later sex-specific processes in the pathogenesis of autism. Our preliminary 
findings indicate the cell type–specific risk of BPD and SCZ, but more detailed genetic studies 
are needed to further dissect cell type and developmental stage vulnerability. The data 
generated here may help enable fine-grained understanding of human brain development 
and provide insight into mechanisms of neurodevelopmental disorders. Interactive 
visualization of our data is available on the University of California Santa Cruz (UCSC) Cell 
Browser (https://pre-postnatal-cortex.cells.ucsc.edu). 

Our study, however, is limited by the technical difficulty of integrating snRNA-seq and 
snATAC-seq data as well as by the lack of inclusion of earlier developmental stages, such as 
the first trimester, owing to challenges of integrating single-cell RNA sequencing (scRNA-
seq) and snRNA-seq datasets. Overcoming these obstacles will allow for even more 
comprehensive future understanding of how specific human cortical lineages develop. 
Moreover, single-cell epigenetic analyses of human brain development would be necessary 
to determine whether imprinting plays a role in regulating sex enrichment of 
developmentally expressed genes. 

Materials and methods summary 

Brain tissue samples were sectioned using a cryostat to collect coronal cortical sections, 
lysed, and ultracentrifuged to isolate nuclei. Nuclei were captured using 10x Genomics Single 
Cell 3′ v.2 kits. 

https://pre-postnatal-cortex.cells.ucsc.edu/


Raw sequencing data were processed using 10x Genomics CellRanger and aligning reads to 
unspliced human transcriptome to capture reads from pre-mRNAs. Dataset integration was 
performed using Harmony based on 10x chemistry, and clustering and UMAP embedding 
was carried out with Seurat. Monocle 3 was used to reconstruct lineage trajectories, and 
custom scripts were used to identify lineage-specific dynamically expressed genes (see 
supplementary materials). 

snATAC-seq data were integrated with snRNA-seq data using canonical correlation analysis 
in Seurat, after which different snATAC-seq chemistries were integrated using Harmony. 
Enhancer gene regulatory networks were identified using SCENIC+. 
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Materials and Methods 

Sample acquisition and selection 

Samples were acquired from three different sources. 1) De-identified second-trimester 
tissue samples were collected at the Zuckerberg San Francisco General Hospital with 
previous patient consent in strict observance of the legal and institutional ethical 
regulations. Protocols were approved by the Human Gamete, Embryo, and Stem Cell 
Research Committee (institutional review board) at the University of California, San 
Francisco. These fresh tissue samples were dissected and snap-frozen in isopentane on dry 
ice. 2) De-identified second-trimester, third trimester and early postnatal tissue samples 
were obtained at the UCSF Pediatric Neuropathology Research Laboratory led by Dr. Eric 
Huang. These samples were acquired with patient consent in strict observance of the legal 
and institutional ethical regulations and in accordance to research protocols approved by 
the UCSF IRB committee. These samples were dissected and snap-frozen either on a cold 
plate placed on a slab of dry ice or in isopentane on dry ice. 3) Banked de-identified second-
trimester, third trimester, early postnatal and adult tissue samples were obtained from the 
University of Maryland Brain and Tissue Bank through the NIH NeuroBioBank. 

For postnatal ages, samples from individuals with known history of brain disorders or brain 
trauma were excluded from downstream analyses. For prenatal samples, samples with 
unusual neuropathology following pathological examination, as well as samples positive for 
commonly tested chromosomal aberrations, were excluded. Prior to performing nuclei 
isolation and single-nucleus RNA sequencing, samples were screened for RNA quality by 
collecting 100um-thick cryosections, isolating total RNA and measuring RNA Integrity 
Number (RIN) using the Agilent 2100 Bioanalyzer instrument. Only samples with RIN >= 6.5 
were included in the study. 

Nuclei isolation and generation of single-nucleus RNA-seq data using 10x Genomics platform 

40 mg of sectioned brain tissue was homogenized in 5 mL of RNAase-free lysis buffer (0.32M 
sucrose, 5 mM CaCl2, 3 mM MgAc2, 0.1 mM EDTA, 10 mM Tris-HCl, 1 mM DTT, 0.1% Triton 
X-100 in DEPC-treated water) using glass dounce homogenizer (Thomas Scientific, Cat # 
3431D76) on ice. The homogenate was loaded into a 30 mL thick polycarbonate 
ultracentrifuge tube (Beckman Coulter, Cat # 355631). 9 mL of sucrose solution (1.8 M 
sucrose, 3 mM MgAc2, 1 mM DTT, 10 mM Tris-HCl in DEPC-treated water) was added to the 
bottom of the tube with the homogenate and centrifuged at 107,000 g for 2.5 hours at 4°C. 
Supernatant was aspirated, and the nuclei containing pellet was incubated in 250 uL of 
DEPC-treated water-based PBS for 20 min on ice before resuspending the pellet. The nuclear 
suspension was filtered twice through a 30 um cell strainer. Nuclei were counted using a 
hemocytometer and diluted to 2,000 nuclei/uL before performing single-nuclei capture on 
the 10X Genomics Single-Cell 3’ system. Usually, the target capture of 3,000 nuclei per sample 
was used; the 10x capture and library preparation protocol was used without modification. 
Single-nucleus libraries from individual samples were pooled and sequenced on the NovaSeq 
6000 machine (average depth 60,000 reads/nucleus). 

snRNA-seq data processing with 10X Genomics CellRanger software and data filtering 

For library demultiplexing, fastq file generation and read alignment and UMI quantification, 
CellRanger software v 1.3.1 was used. CellRanger was used with default parameters, except 



for using pre-mRNA reference file (ENSEMBL GRCh38) to insure capturing intronic reads 
originating from pre-mRNA transcripts abundant in the nuclear fraction.  

Individual expression matrices containing numbers of Unique molecular identifiers (UMIs) 
per nucleus per gene were filtered to retain nuclei with at least 400 genes expressed and less 
than 10% of total UMIs originating from mitochondrial and ribosomal RNAs. Individual 
matrices were combined prior to pre-processing and clustering with Seurat. 

snRNA-seq dataset integration, dimensionality reduction, UMAP embedding, clustering and 
cell type identification 

All of the following bioinformatics analysis steps are documented in an R script available at 
https://doi.org/10.5281/zenodo.7245297. 

In order to integrate snRNA-seq datasets, we utilized Harmony (1) integration using the 10x 
Genomics chemistry version as the grouping variable. Downstream data preprocessing, 
normalization, variable feature selection and PCA was performed using the standard Seurat 
pipeline (2). Selection of significant principal components was done using the elbow method. 
The selected components were used to perform UMAP embedding and clustering using the 
Louvain method. The identity of specific lineages and cell types was determined based on 
expression of known marker genes, as is shown in Figure 1 and Figure S1. 

Sex determination 

To determine the sex of individuals for which sex information was not available, we 
aggregated gene expression of all nuclei by individual and plotted individual-wise 
expression of the following genes: XIST, DDX3Y, KDM5D, USP9Y, ZFY, EIF1AY, UTY. 

Trajectory reconstruction and isolation of individual lineages 

Seurat UMAP coordinates were imported into monocle3 (3) for trajectory reconstruction. 
learn_graph function with custom graph_control options was used to construct the trajectory 
graph. We noticed that while the original trajectory graph generated by monocle3 
corresponded to the major cell lineages, it failed to connect some nodes that passed through 
populations of cells expressing shared lineage markers. Moreover, some trajectory branches 
did not correspond to biologically interpretable lineage progression, specifically the 
branches connecting two mature neuronal cell types containing only adult cells. We 
corrected these issues by modifying the trajectory according to the following principles: 1) 
if two terminal nodes failed to be connected but were passing through populations of cells 
expressing known lineage-specific markers (such as RORB for layer 4, TLE4/SEMA4A for 
layer 6b, CUX2 for layer 2-3 and CUX1 for layer 5-6-IT), we connected these nodes 2) if a 
branch connected nodes located in two mature cell types, we omitted this branch and 3) 
based on the first two principles, we isolated the shortest path between the node in the 
neural progenitor/radial glia cluster and the node in the mature cell type cluster.  

Identification of lineage-specific dynamically expressed genes 

First, we selected trajectory branches corresponding to specific lineages, as well as the cells 
along the branches. For the interneuron trajectory analysis, we only selected MGE or CGE 
cells from the GE progenitors cluster to analyze MGE and CGE-derived INs, respectively. 
Then, monocle3’s Moran's test (graph_test function) was used to identify genes that are 

https://doi.org/10.5281/zenodo.7245297


dynamically expressed in each lineage. We modified graph_test function to utilize Moran’s 
test with covariates to ensure that our results are not affected by uneven contribution of cells 
from male and female subjects, different brain regions, as well as cells postmortem interval 
and 10x chemistry. We selected genes with adjusted p value < 0.05 as statistically significant 
dynamically expressed genes. To identify lineage-specific genes, we first compressed the 
single-cell expression data along each lineage by using a sliding window along pseudotime 
and averaging expression of neighboring cells for each gene. We generated 500 meta-cells in 
each lineage using this approach. Then, we fit the expression of each gene using a generalized 
linear model and the following formula: expression ~ splines::ns(pseudotime, df=3). Then, 
we calculated the area under the curve for the smoothed expression/pseudotime plot for 
each gene in each lineage across intervals of the sliding window. The difference of under the 
curve between the lineage of interest and all other lineages was used to rank genes according 
to their lineage specificity. Moran’s p value < 0.05 and an expression difference of at least 
20% in one section of the sliding window was used to define lineage-specific genes. 

Analysis of single-cell ATAC-seq data and snRNA-seq/scATAC-seq integration 

Four scATAC-seq datasets were first remapped to the same hg38 genome reference. Then, a 
minimal non-overlapping consensus peak set was created based on the peaks from all 
datasets, and ATAC-seq counts were mapped on this set of peaks using Signac (4), and the 
datasets were combined. Then, gene activity matrix for the combined dataset was generated 
by counting ATAC peaks in the promoter region and the gene body, using the same 
parameters as used by the Signac package. For mapping scATAC-seq data on the snRNA-seq 
dataset, we first integrated the two modalities using Seurat’s FindTransferAnchors and the 
canonical correlation analysis (cca). We used the expression and gene activity of genes 
variable in the snRNA-seq datasets to perform cca and then used the TransferData function 
to map the scATAC-seq data on the snRNA-seq space followed by Harmony processing to 
regress the effect of different scATAC-seq and snRNA-seq chemistries. To map scATAC-seq 
profiles to the UMAP space and clusters we generated using snRNA-seq data, we identified 
100 nearest neighbors for each scATAC-seq cell in the combined snRNA-seq/scATAC-seq 
space and then calculated the UMAP coordinates and cluster membership in the snRNA-seq 
space. To validate the accuracy of this procedure, we checked for the specificity of gene 
activity of cell type markers, as well as for age distribution. This integration and mapping 
procedure was repeated for the three major lineage classes (excitatory neurons, 
interneurons and macroglial cells). 

SCENIC+ analysis 

SCENIC+ requires single-cell transcriptomic and scATAC-seq data mapped to the same 
category (e.g. cluster) and also recommends generating pseudobulk scATAC-seq profiles 
prior to the analysis. In order to prepare our data for SCENIC+ analysis, we first selected 
ATAC-seq cells along the lineage trajectories using a sliding window approach and keeping 
the cells in cell type-specific clusters. Then, we generated 2500 meta-cell pseudobulk ATAC-
seq profiles using the sliding window along each trajectory and summing all ATAC counts. 
We also generated 2500 meta-cells for the corresponding lineage-specific snRNA-seq 
profiles and restricted the analysis to lineage and branch-specific genes relevant to each 
lineage. In order to generate pseudo-multiome profiles from separate snRNA-seq and 
scATAC-seq datasets, we sorted cells into 10 bins based on the pseudotime progression. 



These pseudotime bins were also used to identify differentially accessible regions of 
chromatin and cis-regulatory topics using cisTopic (5), which was used with default settings, 
except for setting the differential features threshold to 25%. After generating pseudo-
multiome profiles, we performed SCENIC+ analysis as described in the tutorial. Significant 
enhancer-transcription factor-gene relationships in each lineage were exported as the final 
result. 

Identification of sex and region-enriched dynamically expressed genes 

To identify male and female-enriched genes in each lineage, we selected cells from only 
males or females within each lineage and first performed Moran’s I test separately for male 
and female data. Then, we compressed the data and calculated area under the curve for male 
and female gene expression. Genes with Moran’s I statistic >= 0.1, adjusted Moran’s p 
value<0.05 and the area under curve difference between male and female expression >= 50 
were considered sex-specific in each given lineage. 

Gene ontology analysis 

We used ShinyGO (6) to perform gene ontology analysis using genes expressed in each 
lineage as the background gene list. In order to reduce redundancy of the identified GO terms, 
all significant (adjusted p value < 0.05) terms were used as input to Revigo (7) in case more 
than 10 pathways were identified. The value of the resulting gene list of 0.4 was used. The -
log10(p value) and fold enrichment for the resulting non-redundant GO processes were 
reported. 

Analysis of enrichment of disease risk genes 

We intersected disease risk gene lists with our list of lineage-specific genes, as well as genes 
enriched in male and female developmental lineages. We calculated hypergeometric p values 
for each overlap, using genes expressed in each lineage as the background. 

Data visualization 

Cell type, gene expression and lineage trajectories for each lineage can be visualized at 
https://pre-postnatal-cortex.cells.ucsc.edu. 

MERSCOPE spatial transcriptomics  

Sample preparation was performed according to manufacturer’s instructions (MERSCOPE 
Fresh and Fixed Frozen Tissue Sample Preparation User Guide, Doc. number 91600002). 
Briefly, fresh snap frozen tissue with a high RNA integrity number (RIN>8) were sectioned 
(10um thick) using a cryostat and mounted on MERSCOPE functional slides. Sections where 
then fixed and stored at 70% ethanol for up to two weeks. Sections went through 
autofluorescence quenching under UV light for 3 hours using the MERSCOPE Photo-bleacher 
instrument. A Pre-designed panel mix (140 genes) focused on early emerging excitatory 
lineage-specific genes based on the single-nuclei analysis were used for probe hybridization. 
Hybridizations were performed at 37°C for up to 48 hours in a humid environment. Post 
prob hybridization, sections were fixed using formamide and embedded in gel. After gel 
embedding, tissue samples were cleared using a clearing mix solution supplemented with 
proteinase K for 24-48 hours at 37°C until no visible tissue was evident in the gel. After 
clearing was completed, sections were stained for DAPI and PolyT and fixed with formamide 

https://pre-postnatal-cortex.cells.ucsc.edu/


prior to imaging. No additional cell boundary stainings were used. The MERSOPE imaging 
process was done according to the MERSCOPE Instrument Site Preparation Guide (Doc. 
Number 91500001). Briefly, an imaging kit was thawed at 37°C for 45 minutes, activated and 
loaded into the MERSCOPE instrument. The flow chamber was then assembled, fluidics were 
primed, flow chamber filled with liquid and a low-resolution image was taken. Based on DAPI 
staining, an ROI was chosen for the full imaging experiment. After imaging was complete, 
data was processed using MERSCOPE proprietary software. Further analysis, visualization, 
and integration of spatial data, was done using Seurat v5 (Source: 
vignettes/spatial_vignette_2.Rmd). Putative neuronal layer localization was predicted from 
co-localization with referenced markers at relevant developmental stages. 

 

 

Fig. S1. Technical and biological characteristics of the combined snRNA-seq dataset. 
A) Identification of the clusters containing neuronal debris. B) Integration of the current 
dataset with previously published datasets. C) Gene and UMI counts per nucleus, as well as 
mitochondrial reads ratio across all samples. D) Gene and UMI counts per nucleus across all 
cell types. E-F) Distribution of nuclei from different samples and regions. FC-
frontal/prefrontal cortex, CC-cingulate cortex, TC-temporal cortex, IC-insular cortex, MC-
motor cortex, CTX-cortex. G) Expression of sex-specific genes used to determine sex of 
samples with unknown status. 

 
  



 

Fig. S2. Excitatory neuron and interneuron lineage analysis. A) Expression of cortical 
excitatory neuron marker genes used to determine excitatory neuron lineages. B) Isolated 
lineages trajectories for excitatory neuron subtypes. C) Markers of interneuron subtypes. D) 
Isolated interneuron trajectories. E) Examples of biphasic, plateau, steady and drop 
expression of lineage and branch-specific genes. F) GO pathways enriched for burst and 
transient neuronal genes. G) Top subplate-specific dynamically expressed genes. 

 
  



 

Fig. S3. Spatial transcriptomic analysis of lineage-specific genes across development. 
A) UMAP embedding of annotated clusters. B) Spatial localization patterns of individual 
clusters (cluster colors and spatial location correspond with Fig. 2g). C) Spatiotemporal 
expression of layer-specific markers. 

 
  



 

 

Fig. S4. Analysis of glial and vascular lineages. A) Markers of OPCs, oligodendrocytes, 
fibrous and protoplasmic astrocytes B) Slingshot analysis of microglial lineage trajectories. 
C) Gene ontology analysis developmental microglia genes. D) Analysis of vascular cell types. 
E-F) Trajectory analysis of endothelial cells and pericytes. 

  



 

Fig. S5. Mapping developmental scATAC-seq to specific lineage trajectories. A) Gene 
activities of cell type-specific marker genes. B-D) Age distribution and selection of ATAC-seq 
cells for specific lineages of excitatory neurons (B), interneurons (C) and macroglial cells 
(D). 

  



 

Fig. S6. Frontal cortex-specific developmental programs. A) Cells from the 
frontal/prefrontal cortex and other cortical regions in the excitatory neuron, interneuron, 
macroglial and microglial lineages. B) Number of PFC-specific genes in neuronal and glial 
lineages relative to the total number of genes expressed in each lineage. C-D) Gene ontology 
analysis of PFC-specific genes in neuronal and glial lineages. E) Examples of top genes 
enriched in the PFC in specific lineages. 

 

 



 

Fig. S7. Analysis of sex and region-enriched genes during microglia and endothelial 
cell development. A) Female and male microglia and endothelial cell trajectories. B) 
relative number of sex-specific genes per chromosome. C) Examples of top male-enriched 
genes. D) Female and male trajectories in microglia and endothelial cells. E) Top female-
enriched genes expressed in microglia and endothelial cells. 

  



Data S1.  Sample and nuclei metadata. 

Data S2.  Lineage and branch-specific genes. 

Data S3.  Results of eGRN analysis using SCENIC+. 

Data S4.  Results of region-specific gene expression analysis. 

Data S5.  Sex-enriched developmentally regulated genes. 

Data S6.  Lineage- and sex-specific disease risk genes. 
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